Как найти сторону трапеции, если известно основание. Как найти нижнее основание трапеции если известно верхнее и боковые стороны


Все формулы основания прямоугольной трапеции

1. Формула длины оснований прямоугольной трапеции через среднюю линию

длина оснований прямоугольной трапеции через среднюю линию

 

a - нижнее основание

b - верхнее основание

m - средняя линия

 

 

Формулы длины оснований :

 

 

2. Формулы длины оснований через боковые стороны и угол при нижнем основании

длина оснований через боковые стороны и угол при нижнем основании

 

a - нижнее основание

b - верхнее основание

c , d - боковые стороны

α - угол при нижнем основании

 

 

Формулы длины оснований :

 

3. Формулы длины оснований трапеции через диагонали  и угол между ними

длина оснований трапеции через диагонали и угол между ними

 

a - нижнее основание

b - верхнее основание

c - боковая сторона под прямым углом к основаниям

d1 , d2 - диагонали трапеции

α , β - углы между диагоналями

 

 

Формулы длины оснований :

 

4. Формулы длины оснований трапеции через площадь

длина оснований трапеции через площадь

 

a - нижнее основание

b - верхнее основание

c - боковая сторона под прямым углом к основаниям

h - высота трапеции

 

 

Формулы длины оснований :

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru

Как найти основание трапеции - Как найти основание прямоугольной трапеции и равнобедренной трапеции (меньшее и большее)

Как найти основание трапеции

В самом начале уточним, что трапеция – это геометрическая фигура, которая представляет собой четырехугольник с двумя параллельными противолежащими сторонами. Они-то и называются основаниями трапеции, а две другие – её боковыми сторонами. При соединении центральных точек боковых сторон можно получить среднюю линию фигуры. Эти свойства трапеции лежат в основе вычисления всех остальных ее характеристик. Для того, чтобы вычислить основание трапеции (большое или малое) можно использовать массу разных подходов. Все зависит от полноты имеющихся сведений о геометрическом объекте. Большая часть задач имеют в условии данные о других сторонах и углах трапеции, что заметно упрощает задачу. Часто решение состоит в том, чтобы опустить высоту на основание и с помощью теоремы Пифагора найти нужные параметры. Вычисление одного из оснований при имеющихся сведениях о площади трапеции и втором основании и вовсе не предоставляет никаких проблем. Рассмотрим наиболее частые случаи на примерах.

Как найти основание прямоугольной трапеции

Прямоугольной трапецией называют такую трапецию, в которой один из углов равен 90 градусам. Это наиболее простой из всех вариантов вычисления основания. Как правило, условие задачи содержит данные о втором основании, и решение состоит только в том, чтобы определить тот фрагмент основания, который образует второй угол фигуры с боковой стороной. Как и в вышеописанном случае, рассматриваем отдельный треугольник с основанием из искомого фрагмента. По теореме Пифагора, вычисляем эту часть, прибавляем или отнимаем ее от второго основания и получаем искомый параметр.

Как найти основание равнобедренной трапеции

Похоже обстоят дела с равнобедренной трапецией. Под этим понятием понимают такую трапецию, чьи боковые стороны равны. Эта фигура абсолютно симметрична относительно центра, потому пары углов в ней равны. Это довольно удобно, поскольку, обладая сведениями о хотя бы одном угле, мы можем запросто вычислить параметры и всех остальных. Так как боковые части трапеции равны друг другу, то как и в прошлой задаче, мы должны найти основание через один небольшой его фрагмент. Длина второго фрагмента будет точно совпадать с длиной первого. Делается это также через изображение высоты, образующей треугольник. Через параметры углов и одной стороны этого треугольника мы с легкостью получим искомую часть большего основания.

Как найти меньшее основание равнобедренной трапеции

Если нам известны параметры большего основания, боковых сторон, то это можно сделать так. На большее основание опускаем высоту и записываем две теоремы Пифагора. Одна будет отражать параметры треугольника, в котором в качестве гипотенузы выступает диагональ, в качестве одного катета – высота, а в качестве другого катета – большее основание без отрезка, отсеченного высотой.

Вторая теорема должна быть актуальна для треугольника, который состоит из гипотенузы – боковой стороны, катета – высоты и катета – отрезка от большего основания.

Составляем систему этих уравнений и решаем ее. Находим отрезок, отсеченный высотой от большего расстояния. Отнимаем удвоенные параметры этого отрезка от параметров большего основания и получаем длину меньшего основания.

Читайте также:

  • < Осинки
  • Как зарегистрироваться в Itunes (Айтюнс) без карты >

razuznai.ru

Все формулы сторон равнобедренной трапеции

1. Формула длины основания равнобедренной трапеции через среднюю линию

Основания равнобедренной трапеции

 

a - нижнее основание

b - верхнее основание

m - средняя линия

 

 

Формулы длины основания:

Формула длины стороны трапецииФормула длины стороны трапеции

 

 

2. Формулы длины сторон через высоту и угол при нижнем основании

Длина сторон равнобедренной трапеции

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

α - угол при основании трапеции

h - высота трапеции

 

Формулы всех четырех сторон трапеции:

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через боковую сторону

 

 

3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон равнобедренной трапеции через диагональ

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

d - диагонали

α , β - углы между диагоналями

h - высота трапеции

 

Формулы длины сторон трапеции:

Формула длины основания равнобедренной трапеции через диагонали

справедливо для данной ситуации:

 

4. Формулы длины сторон равнобедренной трапеции через площадь

Стороны равнобедренной трапеции через площадь

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

α , β - углы при основаниях

m - средняя линия

h - средняя линия

 

Формулы длины сторон равнобедренной трапеции через площадь:

Формулы длины сторон равнобедренной трапеции через площадьФормулы длины сторон равнобедренной трапеции через площадь

Формулы длины сторон равнобедренной трапеции через площадь

Формулы длины сторон равнобедренной трапеции через площадь

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru

свойства и признаки: площадь, средняя линия прямоугольной, равнобедренной, как найти высоту

Прямоугольная и равнобедренная трапеция: свойства и признаки

С такой формой как трапеция, мы встречаемся в жизни довольно часто. К примеру, любой мост который выполнен из бетонных блоков, является ярким примером. Более наглядным вариантом можно считать рулевое управление каждого транспортного средства и прочее. О свойствах фигуры было известно еще в Древней Греции, которую более детально описал Аристотель в своем научном труде «Начала». И знания, выведенные тысячи лет назад актуальны и по сегодня. Поэтому ознакомимся с ними более детально.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Основные понятия

Рисунок 1. Классическая форма трапеции.

Трапеция по своей сути является четырехугольником, состоящим из двух отрезков которые параллельны, и двух других, которые не параллельны. Говоря об этой фигуре всегда необходимо помнить о таких понятиях как: основания, высота и средняя линия. Два отрезка четырехугольника которые параллельны друг другу называются основаниями (отрезки AD и BC). Высотой называют отрезок перпендикулярный каждому из оснований (EH), т.е. пересекаются под углом 90° (как это показано на рис.1).

трапеция этоЕсли сложить все градусные меры внутренних углов, то сумма углов трапеции будет равна 2π (360°), как и у любого четырехугольника. Отрезок, концы которого являются серединами боковин (IF) именуют средней линей. Длина этого отрезка составляет сумму оснований BC и AD деленную на 2.

Существует три вида геометрической фигуры: прямая, обычная и равнобокая. Если хоть один угол при вершинах основания будет прямой (например, если ABD=90°), то такой четырехугольник называют прямой трапецией. Если боковые отрезки равны (AB и CD), то она называется равнобедренной (соответственно углы при основаниях равны).

Как найти площадь

Для того, чтобы найти площадь четырехугольника ABCD пользуются следующей формулой:

Рисунок 2. Решение задачи на поиск площади

Для более наглядного примера решим легкую задачу. К примеру, пускай верхнее и нижнее основания равны по 16 и 44 см соответственно, а боковые стороны – 17 и 25 см. Построим перпендикулярный отрезок из вершины D таким образом, чтобы DE II BC (как это изображено на рисунке 2). Отсюда получаем, что

Пускай DF – будет высотой. Из ΔADE (который будет равнобоким), получим следующее:

Т.е., выражаясь простым языком, мы вначале нашли высоту ΔADE, которая по совместительству является и высотой трапеции. Отсюда вычислим по уже известной формуле площадь четырехугольника ABCD, с уже известным значением высоты DF.

Отсюда, искомая площадь ABCD равна 450 см³. То есть можно с уверенностью сказать, что для того, чтобы вычислить площадь трапеции потребуется только сумма оснований и длина высоты.

Важно! При решении задача не обязательно найти значение длин по отдельности, вполне допускается, если будут применены и другие параметры фигуры, которые при соответствующем доказательстве будут равны сумме оснований.

Виды трапеций

В зависимости от того, какие стороны имеет фигура, какие углы образованы при основаниях, выделяют три вида четырехугольника: прямоугольная, разнобокая и равнобокая.

Разнобокая

Существует две формы: остроугольная и тупоугольная. ABCD остроугольна только в том случае, когда углы при основании (AD) острые, а длины сторон разные. Если величина одного угла число Пи/2 более (градусная мера более 90°), то получим тупоугольную.

Если боковины по длине равны

Рисунок 3. Вид равнобокой трапеции

Если непараллельные стороны равны по длине, тогда ABCD называется равнобокой (правильной). При этом у такого четырехугольника градусная мера углов при основании одинакова, их угол будет всегда меньше прямого. Именно по этой причине равнобедренная никогда не делится на остроугольные и тупоугольные. Четырехугольник такой формы имеет свои специфические отличия, к числу которых относят:

  1. Отрезки соединяющие противоположные вершины равны.
  2. Острые углы при большем основании составляют 45° (наглядный пример на рисунке 3).
  3. Если сложить градусные меры противоположных углов, то в сумме они будут давать 180°.
  4. Вокруг любой правильной трапеции можно построить окружность.
  5. Если сложить градусную меру противоположных углов, то она равна π.

 

Более того, в силу своего геометрического расположения точек существуют основные свойства равнобедренной трапеции:

  1. Если диагонали пересекаются под углом, то половина суммы оснований будет равна длине высоты.
  2. В случае, когда в правильную трапецию построена, или может быть построена, окружность, то квадрат высоты равен произведению величин оснований.
  3. Ось симметрии и средняя линия трапеции являются одним и тем же ГМТ.
  4. Когда диагонали пересекаются под прямым углом, тогда для вычисления площади потребуется формула: 
  5. Окружность вписанная в трапецию, делает величину средней линии равной боковой.

Значение угла при основании 90°

Перпендикулярность боковой стороны основания — емкая характеристика понятия «прямоугольная трапеция». Двух боковых сторон с углами при основании быть не может, потому как в противном случае это будет уже прямоугольник. В четырехугольниках такого типа вторая боковая сторона всегда будет образовывать острый угол с большим основанием, а с меньшим — тупой. При этом, перпендикулярная сторона также будет являться и высотой.

Отрезок между серединами боковин

Если соединить середины боковых сторон, и полученный отрезок будет параллельный основаниям, и равен по длине половине их суммы, то образованная прямая будет средней линией. Значение этого расстояния вычисляется по формуле:

Для более наглядного примера рассмотрим задачу с применением средней линии.

Задача. Средняя линия трапеции равна 7 см, известно, что одна из сторон больше другой на 4 см (рис.4). Найти длины оснований.

Рисунок 4. Решение задачи на поиск длин оснований

Решение. Пусть меньшее основание DC будет равно x см, тогда большее основание будет равняться соответственно (x+4) см. Отсюда, используя формулу средней линии трапеции получим:

Получается, что меньшее основание DC равно 5 см, а большее равняется 9 см.

Важно! Понятие средней линии является ключевым при решении многих задач по геометрии. На основании её определения, строятся многие доказательства для других фигур. Используя понятие на практике, возможно более рациональное решение и поиск необходимой величины.

Определение высоты, и способы как её найти

Как уже отмечалось ранее, высота представляет собой отрезок, который пересекает основания под углом 2Пи/4 и является кратчайшим расстоянием между ними. Перед тем как найти высоту трапеции, следует определиться какие даны входные значения. Для лучшего понимания рассмотрим задачу. Найти высоту трапеции при условии, что основания равны 8 и 28 см, боковые стороны 12 и 16 см соответственно.

Рисунок 5. Решение задачи на поиск высоты трапеции

Решение:

Проведем отрезки DF и CH под прямыми углами к основанию AD.Согласно определению, каждый из них будет являться высотой заданной трапеции (рис.5). В таком случае, зная длину каждой боковины, при помощи теоремы Пифагора, найдем чему равна высота в треугольниках AFD и BHC.

Сумма отрезков AF и HB равна разности оснований, т.е.:

Пускай длина AF будет равняться x cм, тогда длина отрезка HB= (20 – x)см. Как было установлено, DF=CH , отсюда .

Тогда получим следующее уравнение:

Получается, что отрезок AF в треугольнике AFD равен 7,2 см, отсюда вычислим по той же теореме Пифагора высоту трапеции DF:

Т.е. высота трапеции ADCB будет равна 9,6 см. Как можно убедиться, что вычисление высоты — процесс больше механический, и основывается на вычислениях сторон и углов треугольников. Но, в ряде задач по геометрии, могут быть известны только градусы углов, в таком случае вычисления будут производиться через соотношение сторон внутренних треугольников.

Важно! В сущности трапецию часто рассматривают как два треугольника, или как комбинацию прямоугольника и треугольника. Для решения 90% всех задач, встречаемых в школьных учебниках, свойства и признаки этих фигур. Большинство формул, для этого ГМТ, выведены полагаясь на «механизмы» для указанных двух типов фигур.

Как быстро вычислить длину основания

Перед тем, как найти основание трапеции необходимо определить какие параметры уже даны, и как их рационально использовать. Практическим подходом является извлечение длины неизвестного основания из формулы средней линии. Для более ясного восприятия картинки покажем на примере задачи, как это можно сделать. Пускай известно, что средняя линия трапеции составляет 7 см, а одно из оснований 10 см. Найти длину второй основы.

Решение: Зная, что средняя линия равна половине суммы основ, можно утверждать, что их сумма равна 14 см.

(14 см = 7 см × 2). Из условия задачи, мы знаем, что одно из равно 10 см, отсюда меньшая сторона трапеции будет равна 4 см (4 см = 14 – 10).

Более того, для более комфортного решения задач подобного плана, рекомендуем хорошо выучить такие формулы из области трапеции как:

  • средняя линия;
  • площадь;
  • высота;
  • диагонали.

Зная суть (именно суть) этих вычислений можно без особого труда узнать искомое значение.

Видео: трапеция и ее свойства

Видео: особенности трапеции

Вывод

Из рассмотренных примеров задач можно сделать нехитрый вывод, что трапеция, в плане вычисления задач, является одной из простейших фигур геометрии. Для успешного решения задач прежде всего не стоит определиться с тем, какая информация известна об описываем объекте, в каких формулах их можно применить, и определиться с тем, что требуется найти. Выполняя этот простой алгоритм, ни одна задача с применением этой геометрической фигуры не составит усилий.

uchim.guru

Формулы сторон трапеции

 

1. Формула длины основания трапеции через среднюю линию

Длина основания трапеции через среднюю линию

 

a - нижнее основание

b - верхнее основание

m - средняя линия

 

 

Формулы длины оснований :

Формула длины стороны трапецииФормула длины стороны трапеции

 

2. Формулы длины сторон через высоту и углы при нижнем основании

Длина стороны трапеции

 

a - нижнее основание

b - верхнее основание

c , d - боковые стороны

α, β - углы трапеции

h - высота трапеции

 

 

Формулы всех четырех сторон трапеции:

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапецииФормула длины стороны трапеции

 

3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон трапеции через диагонали и высоту

 

a - нижнее основание

b - верхнее основание

d1 , d2 - диагонали трапеции

α , β - углы между диагоналями

h - высота трапеции

 

 

Формулы длины сторон трапеции:

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

zdesformula.ru

Как найти основание трапеции

Добрый вечер.Трапеция — это нередкий вопрос. Надеюсь, мы сможем помочь Вам разобраться в этом.Для начала, давайте подумаем, что же такое трапеция. Трапеция — это такой четырёхугольник, у которого две стороны параллельны (они называются основаниями), а остальные две — непараллельны (это боковые стороны).Хорошо, а теперь давайте разбираться, как найти основание трапеции.В первую очередь рассмотрим вариант через периметр. Как мы знаем, периметр — это сумма всех сторон. То есть, логично, что если мы знаем две боковые стороны, а также у нас есть хоть какие-то сведения об одной из основания трапеции. То это очень легко будет сделать.Второй наш случай — это через площадь трапеции. У нас есть вариант, который может подойти:

  1. площадь мы можем найти через сумму оснований ( a + b) и их половину, плюс это всё умноженное на высоту: S = \frac{a + b}{2} * h

Как вы видите, мы можем найти основание трапеции через периметр или площадь, но этого условия недостаточно.Давайте рассмотрим задачу. Нам дана трапеция ABCD. Нам известно, что площадь трапеции равна 200 см ^{2}, а длина меньшего основания (BC/b) = 6 см, а высота BF/h = 4 смТеперь давайте найдём большее основание (AD/a):

    \[S = \frac{a + b}{2} * h\]

 

    \[(a + b) * h = 2S\]

 

    \[(a + b) = \frac{2S}{h}\]

 

    \[a + b = \frac{2S}{h}\]

 

    \[a = \frac{2S}{h} - b\]

    \[a = \frac{2 * 200}{4} - 6\]

 

    \[a = \frac{200}{2} - 6\]

 

    \[a = 100 - 6\]

 

    \[a =94\]

 

    \[AD =94\]

Ответ: AD = 94 см

ru.solverbook.com

Как найти сторону трапеции, если известно основание

Трапеция - геометрическая фигура с четырьмя углами, две стороны которой параллельны друг другу и называются основаниями, а две другие - не параллельны и называются боковыми.

Инструкция

  • Рассмотрим две задачи с разными начальными данными.Задача 1.Найдите боковую сторону равнобедренной трапеции, если известно основание BC = b, основание AD = d и угол при боковой стороне BAD = Альфа.Решение:Опустите перпендикуляр (высоту трапеции) из вершины B до пересечения с большим основанием, получите отрезок BE. Запишите AB по формуле через величину угла: AB = AE/cos(BAD) = AE/cos(Альфа).
  • Найдите AE. Оно будет равно разности длин двух оснований, деленной пополам. Итак: AE = (AD - BC)/2 = (d - b)/2.Теперь найдите AB = (d - b)/(2*cos(Альфа)).В равнобедренной трапеции длины боковых сторон равны, следовательно, CD = AB = (d - b)/(2*cos(Альфа)).
  • Задача 2.Найдите боковую сторону трапеции AB, если известно верхнее основание BC = b; нижнее основание AD = d; высота BE = h и угол при противоположной боковой стороне CDA равен Альфа.Решение:Проведите вторую высоту из вершины C до пересечения с нижним основанием, получите отрезок CF. Рассмотрите прямоугольный треугольник CDF, найдите сторону FD по следующей формуле: FD = CD*cos(CDA). Длину боковой стороны CD найдите из другой формулы: CD = CF/sin(CDA). Итак: FD = CF*cos(CDA)/sin(CDA). CF = BE = h, следовательно, FD = h*cos(Альфа)/sin(Альфа) = h*ctg(Альфа).
  • Рассмотрите прямоугольный треугольник ABE. Зная длины его сторон AE и BE, вы можете найти третью сторону - гипотенузу AB. Вам известна длина стороны BE, AE найдите следующим образом: AE = AD - BC - FD = d - b - h*ctg(Альфа).Используя следующее свойство прямоугольного треугольника - квадрат гипотенузы равен сумме квадратов катетов - найдите AB:AB(2) = h(2) + (d - b - h*ctg(Альфа))(2).Значение боковой стороны трапеции AB равно квадратному корню из выражения, расположенного в правой стороне равенства.

completerepair.ru